7 September, 2010
London School of Economics
Megha Patnial
Princeton University/World Bank
Jeff Hammer

(a little overdimensional, perhaps)

Who speaks for the poor in Karnataka?
Background to study

• “Baseline” of a project to give untied funds to local government in the poorest taluks in Karnataka
• Except to test if it counts as a baseline – it was two years late, I didn’t expect much to come from this (it’s a one shot survey and the intervention may or may not have even happened)
• One thing the baseline was to do was find out what different people wanted and compare it to what they get at the end of the project. Next year maybe.
• Turns out, there are a couple of things to say about “who wants what?”
Dilemma of late start

• If the project didn’t really get started – what’s the best comparator (control)?
 – Neighboring taluks
 – But, aren’t they richer than ours? (well...yeah, they’re supposed to be)

• If the project really had an effect before the baseline survey was done – what’s our comparator (control) group?
So the sample is drawn from a squiggly line around the state...

Project areas are generally outside district headquarter taluks in the North

Project areas are generally inside poor pockets in the South
...straightened out and lined up...
... and 100 pairs of villages are picked at random.
Representativeness of sample

• “Treatment and Control” are perfect
• Edges may not fully represent treatment taluks as a whole
 – Originally thought they were difficult an “remote” so if there were no effects of the project it was due to difficult circumstances
 – Turns out the opposite is true. Being close to a richer taluk means you’re closer to district HQ’s, larger cities and are less remote
What do people want?

<table>
<thead>
<tr>
<th>Service</th>
<th>First choice</th>
<th>Any of top three</th>
<th>“Interior” 1st choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>29.4</td>
<td>60.9</td>
<td>24.8</td>
</tr>
<tr>
<td>Drinking water</td>
<td>13.4%</td>
<td>24.1</td>
<td></td>
</tr>
<tr>
<td>Other water</td>
<td>16</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td>Roads</td>
<td>23.6</td>
<td>63.1</td>
<td>19.6</td>
</tr>
<tr>
<td>Drains</td>
<td>12.4</td>
<td>47.6</td>
<td>9.0</td>
</tr>
<tr>
<td>Toilets</td>
<td>11.6</td>
<td>36.2</td>
<td>13.4</td>
</tr>
<tr>
<td>Electricity</td>
<td>6.2</td>
<td>29.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Streetlights</td>
<td>1.5</td>
<td>10.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Health</td>
<td>3.8</td>
<td>13.1</td>
<td>6.2</td>
</tr>
<tr>
<td>Hospitals</td>
<td>3.6</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>4.9</td>
<td>12.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Education</td>
<td>.3</td>
<td>2.5</td>
<td>.3</td>
</tr>
<tr>
<td>SC</td>
<td>ST</td>
<td>OBC</td>
<td>Higher</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Roads – 22.1%</td>
<td>Roads – 19.5</td>
<td>Drinking water – 16.2</td>
<td>Roads – 25.5</td>
</tr>
<tr>
<td>Drinking Water – 16.5</td>
<td>Drinking water – 16.9</td>
<td>Roads – 16.1</td>
<td>Other water – 20.1</td>
</tr>
<tr>
<td>Other water – 13.7</td>
<td>Drainage – 16.2</td>
<td>Toilets – 14.5</td>
<td>Drainage – 12.5</td>
</tr>
<tr>
<td>Drainage – 12.1</td>
<td>Other water – 14.2</td>
<td>Other water – 13.4</td>
<td>Drinking water – 9.5</td>
</tr>
<tr>
<td>Toilets – 10.0</td>
<td>Toilets – 9.9</td>
<td>Drainage – 12.6</td>
<td>Electricity – 9.4</td>
</tr>
</tbody>
</table>
Who wants what? Regression results

<table>
<thead>
<tr>
<th></th>
<th>SC</th>
<th>ST</th>
<th>OBC</th>
<th>Wealth</th>
<th>Illiterate</th>
</tr>
</thead>
<tbody>
<tr>
<td>First choice: drinking water</td>
<td>.033</td>
<td>.068</td>
<td>.07</td>
<td>.004</td>
<td>.022</td>
</tr>
<tr>
<td></td>
<td>(1.72)^</td>
<td>(2.63)^</td>
<td>(2.96)^</td>
<td>(.97)</td>
<td>(1.49)</td>
</tr>
<tr>
<td>Any choice drinking water</td>
<td>.059</td>
<td>.094</td>
<td>.111</td>
<td>.011</td>
<td>.037</td>
</tr>
<tr>
<td></td>
<td>(2.09)^</td>
<td>(3.2)^</td>
<td>(4.00)^</td>
<td>(1.94)^</td>
<td>(1.92)^</td>
</tr>
<tr>
<td>First choice: other water</td>
<td>-.018</td>
<td>-.035</td>
<td>-.051</td>
<td>-.002</td>
<td>-.044</td>
</tr>
<tr>
<td></td>
<td>(.78)</td>
<td>(1.18)</td>
<td>(2.39)^</td>
<td>(.39)</td>
<td>(2.57)^</td>
</tr>
<tr>
<td>Any choice other water</td>
<td>-.063</td>
<td>-.129</td>
<td>-.14</td>
<td>-.004</td>
<td>-.063</td>
</tr>
<tr>
<td></td>
<td>(2.09)^</td>
<td>(3.66)^</td>
<td>(4.56)^</td>
<td>(.68)</td>
<td>(3.14)^</td>
</tr>
<tr>
<td>First choice: Electricity</td>
<td>-.034</td>
<td>-.059</td>
<td>-.597</td>
<td>.002</td>
<td>.012</td>
</tr>
<tr>
<td></td>
<td>(1.87)^</td>
<td>(3.22)^</td>
<td>(3.53)^</td>
<td>(.84)</td>
<td>(.241)</td>
</tr>
<tr>
<td>First choice: roads</td>
<td>-.013</td>
<td>-.054</td>
<td>-.074</td>
<td>-.004</td>
<td>-.02</td>
</tr>
<tr>
<td></td>
<td>(.51)</td>
<td>(1.51)</td>
<td>(2.94)^</td>
<td>(.84)</td>
<td>(1.08)</td>
</tr>
</tbody>
</table>

*5% significance; ^10%; clustered standard errors (village level)

Knocked out by caste?
Quick summary of table above

• For almost everything, the upper castes want something completely different than the other three
• All three caste coefficients have the same sign (almost all the time) and usually significant
• Other things upper castes want: health (hospitals), streetlights
• Things other people want: drains, sanitation
Who speaks for the poor?
Who speaks for the majority?

- Asked GP members, GP secretaries and a Participatory Rural Assessment (PRA) (designed to elicit residents’ opinions) what their priorities were.
- Compared what they said to what people (of different social and economic backgrounds) said
- Who was closest?
First, have to define "poor"

(this is a tangent for purists' benefit since it turns out not to matter)

NFHS style "wealth index"

Augmented by food questions
Wealth versus other variables

Wealth

Illiterate

Literate

SC
ST
OBC
Other

0
0.2
0.4
0.6
0.8
1
1.2
1.4

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0

these possible "aggregators of preferences"
Compared households’ priorities to each of
their priorities were.
Participatory Rural Assessment (PRA) what
asked GP members, GP secretaries and a
asked households what their priorities
"closeness of preferences"
Then we have to define:
Don’t laugh at the next slide
The following diagram illustrates how each household’s ranking of problems could relate to a comparison group.

The black circles are the ordering of the village (or ward or GP member or GP secretary) priorities 1, 2 and 3. The blue circles are for a household.

An entry of 4, for example is true when a household ranks it #1 and the village ranks it #2.

All logical possibilities are triplets.
\[A = \{1,2,11\} \text{ (that is, it has the same ranking 1,2,3 as the village)} \]
\[B = \{1,2,15\} \]
\[C = \{1,12,7\} \]
\[D = \{1,12,15\} \]

There are 34 of these that can be grouped into 22 categories that can be ranked (with 8 ties or “equivalence sets” like this one). To order elements of the equivalence sets you have to know more details about people’s intensity of preferences.

Giving the best one “A” the score 22, it turns out that 17 and above all have permutations of the same three choices.
Agreement between people and GP Members and Secretaries

Members

Secretaries
Agreement with Participatory Rural Assessment
Who speaks for the poor?

Agreement of representatives with people

Complete disagreement	Good agreement	Difference
GPM | | |
GPS | | |
PRA | | |

- SC
- ST
- OBC
- Other
Who speaks for the poor, part II

Net disagreement

This is not missing – it’s zero (.2%)
Does the GP Member’s caste matter?
More sophisticated analysis

- The dependent variable to explain agreement is made up of a pair of two peoples’ preferences.
- This type of variable is called a “dyad” and the appropriate statistical technique is called (for some mysterious reason) a “dyadic regression”.
- The dependent variable is a pair and the independent variables are either pairs of characteristics in which people differ (with a bunch of restrictions to make sure there is symmetry of effects – one person’s impact has to have the same effect as the other) or shared characteristics such as their village.
- These are commonly used in network analysis.
Preliminary results

- Very similar to the not-so-sophisticated version
- OBC and SC GP members tend to set priorities the same way their constituencies do (not so much with higher castes, though), High caste and ST members less so.
- OBC and SC people tend to agree strongly with their own caste members.
- ST and high caste people don’t even agree with their own caste GP members
- ST people generally agree with other caste GP members
- High caste people REALLY don’t agree with GP members of other castes.
- These are consistent with the symmetry story.
What this does not show

- All this measures is what kinds of things people think are important
- Recall: as of now the GP’s have virtually NO discretion over what they spend their money on so this is hypothetical at this point
- It does not rule out the possibility that even if people agree on roads, they might still be built in front of the OBC Adhyaksha’s house and not in SC colonies.
However...

- If state representatives don’t share the priorities of poor and lower caste people and do share those of higher castes – how effective can they be in furthering low caste interests relative to the elites or the majority?
- If they can’t do that, what exactly is wrong with democracy? (discuss among yourselves)
- And the comparison of local autonomy should be with status quo and not a perfect state
The perfect state?
Absenteism among state employees

- This survey
- The other survey
- The 2003 survey

Teachers
Doctors
What is going to happen in the project under evaluation?

- GP HQ’s
- Libraries
- School boundary walls (supplementing SSA) – biggest share
- Other things no one asked for
- Let’s see what happens in year 5