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DYMAMIC PORTFOLIO ANMALYSIS AND ITS APPLICATION
TO THE PROBLEM OF EXPORT DIVERSIFICATION

Eric Blankméyer and C., R. Frank, Jr.*

I. Introduction

The classical approach to the analysis of portfolios is to choose a
mix of portfolic assets (alternmatively, a mix of exportable products) which

maximizes a function of both expected returns and variance of returns. If,

however, the returns exhibit either an auvtoregressive or lagged crosgs-
covariance structure, this kind of analysis can be extremely misleading.
The lag structure must be incorporated into the analysis to arrive at
neaningful results,

Let us illustrate the point with a specific example. Suppose Byt
and Ppy are the average returns to assets (commodities) 1 and 2 at timeui
and th;£ 4y and 4, are the amounts of each asset in the portfolio., The
returns Pt and B,y are assumed to have equal variance 02. Suppose the
planning 6; decisiZQ making period is two years, that is, a decision will
be made to invest amounts 91 and 4 in each of the two assets in each of
two years to maximize total expected returns for a given level of variance
over the two years. If the returns to each commodity in year 1 are not
affected by returns in year 2 and viee versa, and there is no covariance
in returns from commodities 1 and 2, the total variance in reburns can be
written as
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¥ The authors are grateful to Prof, D, S. Hamermesh for helpful eriticism,



For a given level of variance V, the maximum level of expected revenue is
given by the point P in Fig., 1. In particular, if Pig and Bot have the

=y/20.

same expected value p, the optimal policy is to set 9 = 9%
Can thig be pood policy? Suppose the first price is highly positively
autocorrelated and the second is highly negatively autocorrelated. Thus a
portfolio heavily dependent on the first commodity will tend to have high
returns in period 2 if returns are high in period 1 and low returns in
period 2 if returns are low in period 1. If the portfolio is heavily
weighted toward commodity 2, the opposite will be true. Low returns in
period 1 will be associated with high returns in period 2. The variance
of returns over the two periods will tend to be high with commodity 1 and
low with commodity 2, although the commodities have the same variance in
any single period.
In particular, let us assume that the returns Elt and Eet follow

an autoregressive structure of the form:
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where i is the common mean of Elz.and Qzé.and glE and %QE are uncorrelated
error terms, each with zero means, no autocorrelation, and constant variance gg
(0.19)02 through time, One can show that the variances of Pry and Pot both
equal 02, as in the case above. The variance of revenue over the two

period planning horizon, however, is given by*

% The expression (1.4) may be derived by noting that the correlation between
the price p.E in period t and the price Py b in period t+7 is given by
3

711(70 = qua/(l-O§) where O, is the first order autoregressive coefficient,
0.9 in (L.2) and -0.9 in (1.3).
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(L.h)  Var(pyya) + Roydp + 1oy * Bpplp) = 207 (1.9g; * O.1gy)

If the variance is constrained to a given level V and we maximlze expected
revenue, the optimal portfolio is given by the point Q. Here 45 is given
much more importance in the optimal portfolino since it is negatively auto-
correlated and contribubes to expected revenue to a greater degree for a
given level of variance, Specifically, we have an optimal portfolio in
which 4y = 0'11“JY/G and 9, = 2.18*[?/0.% Note also that expected revenue
is much higher when autocorrelation is taken into account. At the point P,
expected revenue is 2.0~Jﬁ/b while at the point Q, expected revenue 1is
h.6)*jy/b$ if we assume p = 1.0.

The importance of taking intoc account auwtocorrelation in portfolio
analysis can be illustrated with reference to the problem of export
diversification, Braimard and Cooper [1] have suggested that the portfolio
model could be applied to export diversification, They computed the vari-
ance and covariance of the prices of a large number of commodities over the
period 1951-1963, The variances and covariances were computed about the
zero lag, i.e., no account was taken of serial corrvelatlion or cross

correlation., They argued that, ceteris paribus, for commodity pairs with

similar variability and high covariance, there is little reason to diversify
the export mix toward one or the other of the pair since there would be
little or no reduction in the variance of export earnings. (The ceteris
paribug here covers a multitude of other factors, including the assumption
of no differences (on the margin) in net rates of return and no differences
in the variance of uncontrollable fluctuations in output such as those

caugsed by weather.)

% Thig solution can be determined graphically from Fig, 1.



held in the portfolio, We assume that enough of this riskless asset is
held to cover a certain proportion of the variance in returns. For
example, the riskless asset may be considered to be foreign exchange
veserves which are held to cover shortfalls in foreign exchange earnings

below the expected level of earnings,

2.1 The Dynamic Variance Function
| 41 3
Let Py (plt""’pnt) be a vector of n stationary stochagtic
processes, say commodity prices, at time intervals t = 1,...,T.
let q' = (ql,...,qN) be a vector of n quantity weights for the
stochastic prices. For each lag imterval 7 (7 =0, + 1, +2,..., *+ ),

define a covariance watrix

L BN C ) B A &
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Yy (7) vo(7) « oo w (7)

For example 911(5) is the autocovariance function of the first
price process evaluated at the fifth lag; and VlE(S) is the cross-
covariance of the first and second prices, where P leads Py by 5 time units.
We note that

(1) T(7) is symmetric for 7 = 0; also I'(0) is assumed

pogitive definite;
(2) more generally, () = T'(-7) for every 7.
Then the export revenue accruing over T periods is the sum of

vector products

(2.2) Ry = P1°q + pye@ * oou ¥ Dpq .



The variance of thisz sum is

T
(2.3) VarR, =T % (1-]7]/1)a T (7)q
TeaT

Note that in the static case where T = 1, (2.3) becomes

(2.4) VarR, = q'"(0)q .

That 1s, the static case involves the auto- and cross~covariances only
at the zero lag.

The term (1-]7{/T) in {2.3) will be recognized as Bartlett's lag
window, a filter which is depicted in the time domain in Figure 2a. The
filter accentuates autocovariances near the zero lag while autocovariances

with long lags are attenuated.

2.2 Freqguency Interpretation
The frequency-domain interpretation of the Bartlett window is
illuminating. Let Sjl(f) be the power spectrum (if j = 1) or the cross-

spectrum (if J f 1) in the Fourier transform identity

1/2 ienf
(2.5) v, (7) ilﬁ? Sjl(f)el Tar

where 1 =~f‘—l. That 1s we can replace the elements of I'{7r) by the integrals
in (2.5). Since Sjl does not depend on T, a typical term in the summation

(2.3) is

1/2
(2.6) d59, if

T .
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It may be shown that

. 2
T s sin Tnf
(2.7) z (l-—[?’|/T)elgﬁfT= W (£) = 5
T=eT Tsin «f

for -1/2 < f < 1/2.%

Now WT(f) ig Bartlett's window in the frequency domain, where, as

Figure 2b suggests, it acts as a low-pass filter: low-frequency components
enter the portfolio variance virtually unaltered, but high-frequency
components are filtered out, It follows that most of the variation (2.3)
comes Trom prices (or average returns) which exhibit cyclical behavior
with low frequencies, i.e.,, long periods. Thus an optimal portfolioc mix
will tend to emphasize commodities with prices which exhibit short periodic

variability as this variability will be attenuated by Bartlett's window.

2.3 Optimizing Rules
Let p' = E(pt) be a vector of (time~invariant) expected prices.

Generalizing the procedure of section I, we wish to maximize

= O - - . - '-'-
(2.8) Il T-q'-u - QVark, ll(q i-1)

subject to a non-negativity constraint g > 0. T is the planning period,
¢ is the cost associated with variance, kl is a scalar Lagrange multiplier
for the normalizing constraint, and i is a column vector of n units,

The firgt-order conditions are

¥ The derivation is outlined in the appendix to this paper.
The authors are grateful to Professor E. P. Howrey for clarification
of geveral points in this section,
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ofy T
(2.9) —= = T & (|7} (O()H(D)]g - M1 <O
5(1 T
and
811
(2.10) —=-q'-i+1g0
o)\l

where eguality holds if a particular q; or ll ig positive.

Define the matrix

(2.11) B

I
W™

(1-|rHr(7) + 1 (7)]
T

so that (2.9) yields (assuming g > O}
(2.12) q = B'l(T.u-h 1) fa
- T l -

Substituting (2.12) into (2.10),

T-i‘-B%l-u-a
(2.13) Ay o= .
~1.
]
i BT 1

Tous the optimal solutlon for q and ), satisfies (2.10) and (2.11).
These equations are easily solved,

For a second optimizing rule, we assume that there is a riskless
agget which is held as insurance to cover a portion B of accumulated
fluctuations in returns. Let p = 1/{ltr) be the discount factor used

where r is the rate of return on the riskless asset. The problem is then
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T g
(2.14) Maximize f2 = Do Tegley
t=
T
-~ B Z pt-l VarR,
t=1

- 12 {q' oi""l]

where the first term is the discounted sum of expected revenues, the second
term is the present value of the rigkless asset required to cover a fraction

B of the accumulated fluctuations, and A, 1s a secalar Lagrange multiplier

2
on the resource constraint,

Denoting

(2,15} Bm=§ (o=l P()+ T ()]
Temm

form = 1,...,T, we have the first order equations

éfg TapT T el
(2.16) — = { T Yep =B [ £ p Bm]-q - 2,150
g m=1 ’
and
812
(2.17) —==-gri+1lgo0
81\2 =

where equality holds if q; or *,, 18 positive,

2



The solution equations are then

T 1opT
1 mel_ =1 B
. - — » N . _)\‘ .
(2.38) a=31 milp ] [C g5 )=y il
and
T
T 1-p
ire [z p" an] L TTS")'“"B
=1 . .
I m=1 -1
'l o Bm] i
m=1 ’
if g > 0.

This solubion is, of course, very similar to the first.

12,

In this

case the matrix BT ig replaced by a discounted sum of Bm matrices whose

elements are aubo- and cross-covariance functions filtered by Bartlait's

window. Ag the index m of the matrix Bm increases, the window increasingly

accentuates low-frequency components of variance and attenuates high-

frequency components, Thus one expects that as the discount rate r

increases, the low-frequency components will become less potent in terms

of contripbution to variance and the optimal portfolio will move relatively

more Lowards assets with long-cycle (low-frequency) behavior.

Second-order condiiions are easily obtained by noting that the Bm

watrices are positive definite.



13.

III. Eumpirical Tests of the Model

As wmentioned above, we would expect that commoditics whose prices
exhibit long swings in prices even though they may have a relatively small
total variance about the mean are likely to be less favored in an optimal
portfolio, Furthermore; long swing commoditles are likely to become less
desirable as the planning period increases, as the discount rate declines,
or as the cost associated with risk increases. Ag a rough empirical check
of the iwmportance of these factors, we computed auto~ and cross~-covariances
for world prices of O primary commodities (U.S. dollars per ton) on a
guarterly basis for the period 1955 to 1968 [2]. The computations were
based on the assumption that each price followed an Nth order autoregresgive
process

i
(3.1) (pggy) = T oy Aoy giy) * By

S=1
where Pit is the price of the ith commodity in period t, My is the
expected price of the ith commodity, and Zit ig a disturbance term with
expectation zero, no autocorrelation, and variance constant over time.
The disturbance terms for different commodities, Zit and th, were assuned
conteuporaneously correlated but independently distributed about the
non-zero lags,

The order N of the auto-regressive process was determined by
leasbt-sguares estimation of autoregressive structures of succegsively higher
orders until the disturbance termzit wag not significantly autocorrelated.

The estimated equations for the 9 comuodities are shown in Table 1.
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Tahle 1

Autoregressive Price Egquations

R DLW
1, Burlap Py = 0.7 Py, 6-1 + th 0.82 1.86
2. Cocoa Py~ 1.3k Py 1" o.k2 P tuo” Lot 0.83 1.70
3. Cocomut Oi; Pay, = 0.82 py ¢ 3 * Zgy 0.67 L1.55
L, Copra Pyt = 0,83 Pl 1 * 2y, 0.70 1.60
5. Cotton Poy = 0.76 Ps .1 + Z5t 0.80 2,25
6., Heup Py = 0.88 Py, o1 * T 0.87 1.60
7. Tea Poy = 0.9 Do op1” 0.3 p7,t_2+ ZTt 0.63 2.00
8, Tin Pyt = 0.85 Piy 1 + 2, 0.92 1.97
9. Wool Poyy = 132 Pg ¢ 9" 0.46 py ¢ ot Zoy  0.85 2.00

Note: Prices are measured per ton as deviations from the following means:

Burlap: 51 = $11,13, Copra: ﬁh = $9,12, Tea: 57 = $50.3,

8

Cocoas 52 = $28.05, Cotton: 55 = $26.35, Tin: 58 $125.22,

Coconut 0il: 53 = $15,60, Hemp: 56 = $2h.37, Wool: b, = $56.64
7
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The matrices I'(7T) of auto- and cross-covariances were computed

in two steps. First the autocovariances were estimated from recursion

aquations:
AA (0)
A c. v, . L0
(3.2)  v,(1) = ALAL S
1«@12
and

N AN NA
(3-3) Vll(T) = allyll(T-l) + Ol

12712 (72)

A
for T= 2,... « In these eguations yll(o) is the usual estimate of the

A N
variance and all’ alE are the least-squares estimates of Table 1, (For

i)
a Tirst-order process, O, = 0.)
Next, the same least-squares autoregressive parameters were used

~
to compute maximum-likelihood estimates vij(T) of the cross-covariance

between commodity i and commodity j at lag 7 for n obgervations:

(38) 5.1 =5 (e % Gy pre D (ronr T SigPerg)
' i3 m t:l it el 1s71it-5 je+T g=] j8 t-7-5 -

The maximum-likelihood procedures used here are discussed in Jenkinsg
and Watts [3,pp. 189-192, 338-340], The logic for formula (3.4) is that
the autoregressive processes must be reduced to white noige before the
croass~covariance functions éan be estimated. Otherwise large auto-
coveriances would give rise to spurious cross-covariances,

The autoregressive parameters &is and the egtimated variances

A
of the disturbance terms U;i may be vsed to compube the spectrum component
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of variance Sii(f) of commodity i at any frequency f according to the

formula

AD
26,3

(3.5) 8;(2) =

A A A N
+ L] L1 L.l a5
1+ a?l a§2 20, , (10, ,)eos2nf-20, yeoshns

for 0 < f < 1/2 (cycles per quarter).

By integrating (3.5) over frequency for each commodity we can determine
the proportion of total variance at or below any frequency. Table 2 gives
the cumulative digtribution of variance for each of the 9 commodities;

and it is seen that burlap, cotton, and tea prices are relatively short
swing while cocoa and hemp have long-swing prices. We would therefore
expect that the commodity wix would shift toward burlap, cotton, or tea
ag we go from static portfolio analysis to dynamic analysis.

We now tabulate optimal output levels for export portfolios composed
of some of the commodities in Table 1. Static and dynamic optimal mixes
are discussed for a range of values of the parameters ¢ {the cost of variance
and p (the discount rate).

Table 3 gives some solutions to the portfolio problem which is to
maximize (2.7) (no discount rate used) with the following five commodities:

1. Cocoa {long swing)
2. Hemp {long swing)
3. Tea (short swing)
L. Tin (long swing, large varianece)

5, Wool {intermediate swing)
Tn order to solve this problem, we used the non-linear programming

algorithm due to Houthakker [4]. Two sets of solutions are ziven
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Table 2

Cumulative Distribution of Variance

Entries glve per cent of total variance
at or below the indicated frequency.

Frequency Coconut
(cyeles/quarter) (1) Burlap (2) Cocoa (3) oil
0.0 .28 .70 . 50
0.05 .60 .98 .80
0.10 .75 .99 .99
0.15 .82 .99+ .99+
0.5 L.0 1.¢ 1.0
Frequency (4) copra (5) Ccotton (6) Hemp
0.0 . 5h .37 .78
0,05 .82 .69 .99
0.10 .91 .81 . 9o+
0.15 .95 .87 90+
0.5 1.0 1.0 1.0
Frequency (7) Tea (8) min (9) Wool
0.0 .15 .62 <37
0.05 b .88 .81
0.10 .70 .96 .93
O. 1-5 n83 *99 '99
0.5 1.0 1.0 1.0



Optimal Portfolios

Claszsical Static
Case

Commodities

12 3 h

¢ 0 o 0.8
0 0 0.016 0.43
0 0 0.21 0.29
0 O 0,30 0.23
0 0 0.36 0.18

0.19
0.55
0.50
0,47
0,46

Table 3

for Cocea, Hemp, Tea, Tin and Wool¥

0.05
0.10
0.15
0.2C
0.25

# Planning horizon T = 16 quarters

Case
Commodities
1 2 3
0 8] G.53
0 0 0.65
0 0 0.68
0.025 0,02 0,467
0,037 0.08 0.63

Filtered Dynamic

0.12
0.06
0.05
0.0k
0.03

0.35
0.29
0.27
0.25
0.23

18.
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in Table 3. The cost of variance @ is varied from 0,05 to 0.25. Note that
the short swing commodity 3 and intermediate swing commodity 5 increase in
importance as we move from the statlc to dynamic case with ¢ = 0.05, For
larger ¢, the short swing commodity 3 increases in the optimal portfolio.
The long swing commodity U4 declines drastically as we move from the static
to dynamic case for all values of ¢. As ¢ increases, the large variance
commodity U decreases in importance in both the gtetic and dynamic cases.
Table U shows the same commodities in optimal portfolios for the
static and dynamic cases., The optimizing problem is given by (2.1Lk) and
assumes that a riskless asset is held to cover a certain proportion of
accumulated fluctuations in returns. In the classical case, the changes
in the optimal portfolio are slight. In the dynamic case, the changes in
optimel portfolios are more pronounced. The short swing commodity 3 declines
in importance while the long swing commodity L increases in importance,
The reason for this phenomenon is that the cost of long swings in variance

igs attenuated by the higher discount rate.



Table U

Optimal Portfolios for Different Discount Rates®

Classical Static Filtered Dynamic
Casge Casge
Commodities Commodities
T {2 1%3 " 5 o 112 3 L 5
O01l0 01! 0,45 0,55 1,05 0| 0] 0.60]| 0,08] 0.32
0.46 ] ¢.54 .17 o} 0 | 0.51] 0,131 0.36
010 |0 | o.52] 0.48 1.32 c {0 | 0.35{ 0.21] 0.4k

% o = 0.05, planning horizonm = 16 quarters.
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APPENDIX

To outline the derivation of (2.7) we first nobte the following

trigonometric identities (where w=27f)1

T cos ( 2%& } wsin Eg

(a.1) T coswt = -

= sin 5
(A.2) 2 cos % (Tw + w)sin % (Tw) = sin (Tw + % } - sin( %

T sin EP—;—]-‘- wsin %U—
(A.3) L ginuwt = =

=1 sin =

2

(A.4) Esin% (Te + w) sin—é— (Tw) = =[cos(Tw + -;* } - cos 'gbi ]

oTw o, {11
(4.5) sin 55 = * J/;V- 5 cosTu .«

sin(T +

Jw

~T gin

——~
=g
M
o
—
it M3
)
fuie
cr
I
rfg jroje
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Use (A.3) and (A.4) to show that

T -[cos(T + %—)w-cos g- 1
(A.7) 2 % sin wb = = .
=1 sin 5

Use (A.6) and (A.7) to show that

T |t ) T T
(s = iwt 5 JIonh p o teoswt
t=wT t==T t=
S
_B "5 °%
2w
Tein 5
In this step use the fact that
T og T - %— + Tsin % sin (T + %‘-)w + —]é'-— cosTw
2 Z tcoswt = 3G % ginwt =
t=1 t=1 . .2

Use (A.5) in (A.8) to complete the proof that

. 2 Tw
T |t| set Sin o5
b (1_ ~ ) a e
t=-T Tgin 5



